
J. Fluid Mech. (2005), vol. 536, pp. 347–366. c© 2005 Cambridge University Press

doi:10.1017/S002211200500491X Printed in the United Kingdom

347

Nonlinear distortion of travelling waves in
variable-area ducts with base flow: a
quasi-one-dimensional analysis

By MANAV TYAGI1 AND R. I. SUJ ITH2†
1Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600036, India
2Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India

(Received 12 November 2003 and in revised form 24 February 2005)

This paper presents an investigation of the nonlinear steepening of a gasdynamic
disturbance propagating in a steady non-uniform base flow. The base flow is
the steady compressible flow of a gas in a variable-area duct. The quasi-one-
dimensional continuity, momentum and energy equations for the unsteady disturbance
in homentropic flow are solved using the method of characteristics (wave front
expansion technique). A closed-form solution for the slope of the disturbance at the
wave front is obtained. The solution admits singularity for a compressive disturbance,
which is responsible for the formation of shock in the flow. The solution is general
and is applicable in any range of Mach number of the base flow. A special case of the
steady gas flow in a convergent–divergent duct (C-D nozzle), where the flow makes a
transition from subsonic to supersonic and vice versa, is investigated.

1. Introduction
The problem of shock formation in various flow situations is of great practical

interest and has been studied for a long time. A shock arises owing to the nonlinear
distortion of a finite-amplitude disturbance. The classical problem of the steepening
of a plane wave into a shock in a constant-area duct with homentropic flow can be
found in many text books of gasdynamics. In this simple case, the Riemann invariants
are constant along the characteristics and thus it is possible to find an exact solution
for the one-dimensional gas dynamics equations using the method of characteristics
(Courant & Friedrichs 1948; Liepmann & Roshko 1957). The solutions so obtained
become multi-valued in finite time. Since multi-valued solutions are impossible, a
shock (jump) is formed at that location. It can also be shown that in the case of
an ideal gas, only compressive disturbances can steepen into shock, whereas the
expansive disturbances relax.

However, this classical treatment of shock formation is limited only to plane-wave
propagation in a constant-area duct with homentropic flow. The propagation of plane
waves in variable-area ducts with non-uniform flow is quite complex. In this case,
the Riemann invariants are no longer constant along the characteristics and an exact
solution of the problem is yet to be found. An important example of shock formation
in a variable-area duct with non-uniform flow is shock formation in converging–
diverging flow passages in rocket or jet engine nozzles and in intakes (diffusers) of
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supersonic vehicles. In a rocket nozzle, the flow accelerates from a subsonic region
(after combustion) to a supersonic region. The source of disturbance could be the un-
steady combustion, taking place in the combustor. Such a disturbance will propagate
along the accelerating flow. In the air intake of a supersonic vehicle, for example, air-
breathing engines (turbojet/ramjet/scramjet), steady shocks are present in the front
part of the vehicle. Owing to a sudden variation in the speed of vehicle or change
in ambient conditions, these steady shocks fluctuate and cause the disturbances to
propagate along the decelerating flow. Therefore, determination of shock formation in
a convergent–divergent nozzle is an important problem, and a detailed analysis of such
a problem could be useful for the design of nozzles and intakes in supersonic vehicles.

Since shock is formed owing to the inertial overtaking of flow particles, shock
formation in a flow could be related to its inertial stability. If in a given gasdynamic
flow, shock formation is favoured, the flow is inertially unstable towards a gasdynamic
disturbance and if shock formation is opposed, the flow is inertially stable towards
a gasdynamic disturbance. In fact, the stability of accelerating and decelerating flow
in the transonic region in a convergent–divergent (C-D) nozzle has been a concern
for a long time. Kantrowitz (1947) made the first attempt to understand the stability
of quasi-one-dimensional steady transonic flow. He concluded that an accelerating
transonic flow is stable and a decelerating transonic flow is unstable. Kuo (1951)
investigated the stability of a triangular pulse in transonic flow by solving the
potential flow equation for unsteady two-dimensional flow. His analysis showed that
accelerating transonic flow is stable for an unsteady disturbance over a convex surface
(aerofoil). On the other hand, decelerating transonic flow is unstable for a compression
pulse over a convex surface. Prasad published a series of papers concerning the
stability of transonic flow. He derived a nonlinear approximate equation for a
hyperbolic system and studied the stability of two-dimensional steady spiral flow
of compressible fluid (Prasad 1972). He showed that the flow is unstable if the sonic
transition occurs from a supersonic state to a subsonic state and it is stable when
the transition is from a subsonic state to a supersonic state. A similar analysis was
performed in Prasad (1973). Prasad & Krishnan (1977) considered wave propagation
in a two-dimensional steady transonic flow and investigated the turning effect of a
wave front. Prasad (2001) explained the BKPS (Bhatnagar, Kulikovskii, Prasad and
Slobodkina) theory, which was initially developed by Kulikovskii & Slobodkina (1967)
and was further extended by Bhatnagar & Prasad (1971). This theory is essentially
based on the method of phase plane for a nonlinear system. Using this theory he
explained (in a quasi-one-dimensional flow in a C-D nozzle) why an accelerating
transonic flow is stable and why it is difficult to obtain stable decelerating transonic
flow experimentally.

Although there has been much work on the stability of flow in C-D nozzles, the
questions of whether a disturbance will steepen into a shock or not and where the
location of the shock will be have not been answered in the literature. The present
paper gives a detailed analytical treatment of the nonlinear steepening of a disturbance
in a variable-area duct with steady non-uniform base flow, with an example of flow
in a C-D nozzle. The flow is assumed to be quasi-one-dimensional. Therefore, the
two-dimensional and wave front turning effects are not taken into account. However,
the present analysis is much simpler and gives the detailed analysis of wave front
steepening in C–D nozzles. The main results of the work are to give the condition of
shock formation and the corresponding location of the shock.

As mentioned in the beginning of this section, the Riemann invariants are not
constant along the characteristics in a non-uniform flow. However, if we consider that
the disturbance comprises of the wave with a discontinuous first derivative at the



Nonlinear distortion of travelling waves in variable-area ducts 349

wave front (Whitham 1974), it is possible to find a global solution in closed form,
at least for the slope of the dependent variables at the wave front. The location and
time of shock formation can then easily be obtained as they are singular points of the
solution. This technique is called ‘wave front expansion’. Any disturbance produced
in finite time (for example by a moving piston) in a diffusion-free medium will have
a discontinuity in the first derivative of the flow variable (slope), but not in the value
of the flow variable (amplitude). Therefore, for the existence of such a disturbance, it
is assumed that the propagation of the disturbance is purely hyperbolic.

Lin & Szeri (2001) used the wave front expansion technique to study the nonlinear
steepening of plane and spherical wave fronts in the presence of an entropy gradient.
They found that shock formation is favoured by negative entropy gradients and
is opposed by positive entropy gradients. Tyagi & Sujith (2003) applied the same
technique to investigate the effect of area variation and entropy gradients on shock
formation in a quiescent flow. Their analysis showed that the shock formation distance
is shorter in converging ducts and longer in diverging ducts as compared to that of a
constant-area duct. Tyagi & Sujith (2003) considered wave propagation in a quiescent
flow. In the present paper, we extend this analysis to the case of wave propagation in
a variable-area duct with an initially present steady non-uniform flow. This initially
present steady non-uniform flow in the variable-area duct will be referred to as ‘base
flow’ in the rest of the paper.

The paper is organized as follows. The evolution equation for the first derivative of
particle velocity at the wave front is derived in § 2 and solved in § 3. Sections 4 and 5
give the detailed analyses of right- and left-running waves in non-uniform flow (flow
in convergent–divergent nozzles). Finally, § 6 draws conclusions.

2. Evolution equation for the first derivative of particle velocity at the wave
front

In this section, an evolution equation is derived for the first derivative of particle
velocity at the wave front. The quasi-one-dimensional continuity and momentum
equations for an inviscid gas can be written as (Thompson 1972)
Continuity:

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
+

ρu

A

dA

dx
= 0, (2.1)

Momentum:
∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0. (2.2)

In a homentropic flow, for an ideal gas, pressure and density are related by the
following relation:

p = kργ , (2.3)

where γ is the ratio of specific heats of the gas and k is a function of the reference
pressure and reference density. Equations (2.1) and (2.2) form a hyperbolic system
having characteristic velocities u + a and u − a (Courant & Friedrichs 1948), where
a(=

√
γp/ρ) is the speed of sound. Following the derivation of Lin & Szeri (2001) or

Tyagi & Sujith (2003), (2.1) and (2.2) can be recast as:
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Figure 1. The effect of a right-running disturbance on the base flow. (a) Compression wave
increases the velocity of base flow at the wave front. (b) Expansion wave decreases the velocity
of base flow at the wave front.

In order to study the behaviour of a wave front, the wave front expansion technique
will be applied (Whitham 1974). A detailed explanation of this technique can be found
in Tyagi & Sujith (2003). In this technique, it is assumed that the wave at the wave
front is discontinuous in its first derivative, i.e. dependent variables such as velocity,
pressure and density of the gas have a discontinuous first derivative at the leading
edge of the wave.

The evolution of a right-running wave front is considered first. Let the position of
the wave front after time t be x =X (t). The velocity of a right-running wave front
will be

dx

dt
= Ẋ(t) = [u + a]x=X(t). (2.6)

While performing the wave front expansion, the frame of reference is fixed to the
moving wave front. In this frame of reference, the position of a particle will be
ξ = x − X(t). Downstream of the wave front, i.e. for ξ > 0, there is an undisturbed
steady base flow. Upstream of the wave front, i.e. for ξ < 0, the flow is unsteady.
Figure 1 shows the compression and expansion of a given steady base flow by a
right-running wave. Expanding the dependent variables as a Taylor series about the
wave front gives:

a(X(t) + ξ, t) = a0(X(t)) + ξa′
0(X(t)) + 1

2
ξ 2a′′

0 (X(t)) + · · ·
u(X(t) + ξ, t) = u0(X(t)) + ξu′

0(X(t)) + 1
2
ξ 2u′′

0(X(t)) + · · ·
A(X(t) + ξ ) = A(X(t)) + ξA′(X(t)) + 1

2
ξ 2A′′(X(t)) + · · ·


 ξ > 0, (2.7a)

a(X(t) + ξ, t) = a0(X(t)) + ξa1(t) + 1
2
ξ 2a2(t) + · · ·

u(X(t) + ξ, t) = u0(X(t)) + ξu1(t) + 1
2
ξ 2u2(t) + · · ·

A(X(t) + ξ ) = A(X(t)) + ξA′(X(t)) + 1
2
ξ 2A′′(X(t)) + · · ·


 ξ < 0. (2.7b)

Note that u0(x), a0(x) and A(x) are the velocity of the base flow, the speed of sound
and the cross-sectional area of the duct, respectively. In fact, for a homentropic steady
flow, the cross-sectional area of the duct A(x) specifies u0(x) and a0(x). Using (2.6), the
velocity of the wave front becomes Ẋ(t) = a0(X(t))+u0(X(t)). The expansions in (2.7)
are substituted into (2.4) and (2.5) and the coefficients of ξ 0, ξ 1 are equated. After
performing the required manipulations, we obtain the following evolution equation
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for u1(t):

du1

dt
+ p + qu1 + ru2

1 = 0, (2.8)

where
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The base flow is governed by the following gasdynamic equations (John 1984):

a2
0 + 1

2
(γ − 1)u2

0 = a2
0s, (2.9a)

u′
0

(
1 − u2

0

a2
0

)
= −u0A

′

A
, (2.9b)

where a0s is the stagnation speed of sound.
Equation (2.8) is the generalized Riccati equation. Since p, q and r are functions

of the variable X(t), it is convenient to use X(t) rather than t as an independent
variable. Using

du1

dt
=

du1

dX(t)

dX(t)

dt
=

du1

dy
Ẋ(t),

where y = X(t) and Ẋ(t) = a0(y) + u0(y), (2.8) becomes

du1

dy
+ P + Qu1 + Ru2

1 = 0. (2.10)

Here P = p/Ẋ(t), Q = q/Ẋ(t) and R = r/Ẋ(t). Thus, P , Q and R are known functions
of y for a given duct having a steady base flow. Equation (2.10) governs the evolution
of the first derivative of the particle velocity at the wave front, u1(y) as a function of
the location of wave front (y). When there is no disturbance, the first derivative
of the particle velocity is u′

0(y), i.e. the same as the first derivative of steady base
flow velocity. In the present analysis, at some location (say y = 0), this is changed
from u′

0(0) to u1(0) owing to some disturbance. This introduces a discontinuity in
the first derivative of particle velocity at the wave front that propagates along the
characteristics at the characteristic velocity Ẋ(t).

3. Solution of Riccati’s equation
In general, it is not possible to integrate Riccati’s equation (2.10) for u1. However,

Riccati’s equation can be reduced to a linear first-order ordinary differential equation
if a particular integral is known (Davis 1962). In the absence of any disturbance,
the first derivative of the particle velocity at the wave front remains constant at all
times and is equal to the first derivative of the particle velocity in the steady base
flow. Therefore u′

0(y) is a particular integral of (2.10). This can easily be justified by
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substituting u1 = u′
0 in the right-hand side of (2.10), which gives

du′
0

dy
+ P + Qu′

0 + Ru′2
0 = 0. (3.1)

This relation can be used to eliminate P from (2.10). For this purpose, u1 is written
as a sum of u′

0 and some function σ (y), and then substituted into (2.10). Using (3.1),
the resultant equation simplifies to

dσ

dy
+ (Q + 2u′

0R)σ + Rσ 2 = 0. (3.2)

Indeed, the above mathematical trick clears the physics of the propagation of the wave
front in a non-uniform steady flow (base flow). The variable u1, the first derivative
of particle velocity at the wave front, contains contributions, both from the base
flow and the unsteady disturbance. In the base flow, the first derivative of particle
velocity is u′

0(y) which is governed by the relation (3.1). The function σ (y) can then be
thought of as the contribution from the unsteady disturbance to u1 whose evolution
is governed by (3.2). In fact, we may think of σ (y) as the equivalent ‘slope of the
unsteady disturbance at the wave front’. In the rest of the paper, σ (y) will be referred
as the slope of the disturbance. The term σ (y) is negative for compression waves and
positive for expansion waves.

Equation (3.2) is similar to the equations derived by Lin & Szeri (2001) and Tyagi &
Sujith (2003). In (3.2), the coefficient of the nonlinear term R is responsible for the
nonlinear steepening of the wave front. Since R is always positive, the nonlinear term
will try to decrease the value of σ . Thus, the nonlinear term makes a negative value of
σ more negative and a positive value of σ less positive. Thus, the nonlinearity alone
causes a compression wave front to steepen and an expansion wave front to relax.
The linear term (Q + 2u′

0R)σ in (3.2) is due to the non-uniform medium. It takes
into account the gradient in the flow variables as well as the geometrical changes
due to the area variation. The linear term has the same effect on both compression
and expansion wave fronts. If we neglect the effect of the nonlinear term, it is clear
that the magnitude of σ will decrease when (Q + 2u′

0R) is positive and increase when
(Q + 2u′

0R) is negative.
The solution of (3.2) (see Tyagi & Sujith 2003) is

1

σ (y)
=

IF(0)

IF(y)σ (0)
+

1

IF(y)

∫ y

0

IF(y)R(y) dy, (3.3)

where the integrating factor is

IF = exp

(
−

∫
(Q + 2Ru′

0) dy

)
. (3.4)

Using (2.9), Q and R can be written as

Q(y) =
1

2

(
−u′

0

u0

−
(

γ − 1

2

)
4u′

0

a0

+

(
γ − 1

2

)
u0u

′
0

a2
0

)
, (3.5a)

R(y) =
(γ + 1)

2(a0 + u0)
. (3.5b)

Performing the required integration, the integrating factor can be expressed as

IF(y) =
2a0

(
1 + 1

2
(γ − 1)M2

)√
M

(γ − 1)(M + 1)2
. (3.6)

Here, M = u0/a0 is the Mach number of the base flow.
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Figure 2. The effect of a left-running disturbance on the base flow. (a) Compression wave
decreases the velocity of base flow at the wave front. (b) Expansion wave increases the velocity
of base flow at the wave front.

Similarly, for a left-running wave front, the integrating factor can be expressed as:

IF(y) =
2a0

(
1 + 1

2
(γ − 1)M2

)√
M

(γ − 1)(M − 1)2
(3.7)

Figure 2 shows the compression and expansion of a given steady base flow by a left-
running wave.

4. Nonlinear steepening of a right-running wave
This section investigates the steepening of a right-running wave front into a shock.

Since the base flow velocity u0(y) and its derivative u′
0(y) are finite, shock will form

when σ (y) becomes infinite. This occurs when the right-hand side of (3.3) vanishes.
Since IF(y) > 0, shock can form only when σ (0) < 0, i.e. the initial disturbance is
compressive. If it is assumed that the base flow field is extended up to infinity, the
condition for shock formation can be obtained as:

|σ (0)| >
IF(0)∫ ∞

0

IF(y)R(y) dy

. (4.1)

Here, |σ (0)| is the magnitude of σ (0). The location of shock, y∗ is given by:∫ y∗

0

IF(y)R(y) dy =
IF(0)

|σ (0)| . (4.2)

4.1. An example of flow in a converging–diverging (C-D) nozzle

The above analysis can be used to study the steepening of a unsteady disturbance
generated in a choked C-D nozzle, where the flow transits from subsonic to supersonic
and vice versa (John 1984). The homentropic steady flow in a C-D nozzle is chosen
as the base flow. The base flow considered here is such that Mach number is either
an increasing or decreasing function along the nozzle (it is assumed that there is no
steady shock in the diverging part of the nozzle). The origin of the coordinate system
(x = 0) is fixed at the throat of nozzle. It is assumed that the nozzle is extended
from −∞ to +∞ (a finite nozzle always forms a part of such an infinitely large
nozzle). Therefore, when the Mach number of the base flow increases along the
nozzle (accelerating flow), its value at the left-hand extreme end (−∞) is zero and
becomes infinite at the right-hand extreme (+∞). The reverse of this occurs when the
Mach number of the base flow decreases along the nozzle (decelerating flow). For a
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choked flow in a C-D nozzle, the Mach number M(x) and cross-sectional area of the
nozzle are related by the following relation (John 1984):

A(x)

A(0)
=

1

M(x)

(
1
2
(γ + 1)

1 + 1
2
(γ − 1)M(x)2

)(γ+1)/(2−2γ )

, (4.3)

whereA(0) is the cross-sectional area at the throat of the C-D nozzle.
Consider a right-running wave front that starts at the location x = xi (y = 0 and

t = 0) in the nozzle. The expressions for the location of shock (4.2) and the condition
of shock formation (4.1) can be written in the following form:∫ y∗

0

f (M)

f (Mi)
dy =

2a0i(Mi + 1)

(γ + 1)|σi |
= βi, (4.4)

|σi | >
2a0i(Mi + 1)

(γ + 1)

∫ ∞

0

f (M)

f (Mi)
dy

. (4.5)

Where the function f (M) is:

f (M) =
IF(y)

a0 + u0

=
2
(
1 + 1

2
(γ − 1)M2

)√
M

(γ − 1)(M + 1)3
. (4.6)

The value of the variables at x = xi is identified by the subscript i. βi is the shock
formation distance in a constant-area duct having a uniform base flow at a Mach
number Mi . The static speed of sound a0i is related to the stagnation one as:

a0i =
a0s√

1 + 1
2
(γ − 1)M2

i

. (4.7)

Using (4.7), we can write βi as:

βi = βs

1 + Mi√
1 + 1

2
(γ − 1)Mi

, (4.8)

where βs = 2a0s/((γ + 1)|σi |) is the shock formation distance in a constant-area duct
in the stagnant condition. Thus, βi is a function of the Mach number and is always
greater than βs .

Physically, the function f (M) tells us about the effect of non-uniform flow on wave
steepening. In the present paper, the properties of this function will be exploited to
explain the physics of wave steepening in subsonic and supersonic flows (in a C-D
nozzle). In order to perform this analysis, we must choose some reference with which
the shock formation in a general non-uniform flow can be compared. In the present
paper, the shock formation distance will be compared with βi . This makes the analysis
simpler and provides insight into the physics of the problem. If y∗ is less than βi ,
shock formation is favoured and if y∗ is greater than βi , shock formation is opposed.
Such comparisons give the overall tendency of a wave front to form a shock. During
the propagation of disturbance (before shock formation), the slope of the disturbance
(σ (y)) might increase or decrease at different points. However, the present analysis
compares the net effect of non-inform flow on the shock formation distance. Using
(4.4), we can then write that shock formation is favoured if:

y∗ < βi ⇒ y∗ <

∫ y∗

0

f (M)

f (Mi)
dy
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Figure 3. (a) Plot of f (M) as function of M . The function f (M) attains maximum value
at M = Mc . (b) The case when the disturbance is created before Mc . (c) The case when the
disturbance is created after Mc .

or ∫ y∗

0

f (M) − f (Mi)

f (Mi)
dy > 0, (4.9)

and shock formation is opposed if:

y∗ > βi ⇒ y∗ >

∫ y∗

0

f (M)

f (Mi)
dy

or ∫ y∗

0

f (M) − f (Mi)

f (Mi)
dy < 0. (4.10)

The integral
∫ y∗

0
(f (M) − f (Mi))/f (Mi) dy is merely the difference βi − y∗.

4.1.1. Accelerating flow

In an accelerating base flow in a C-D nozzle, the Mach number M = M(x) is an
increasing function, and thus has a one-to-one correspondence with the distance x.
Therefore instead of x, M can be treated as the independent variable along the nozzle
length. The plot of f (M) versus M for γ = 1.4 is shown in figure 3(a). The maximum
value of f (M) occurs at a point Mc. Therefore, Mc will be a root of the equation,

f ′(Mc) = 0. (4.11)
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Figure 4. Plot of Mc as a function of γ .

Using (4.6), we obtain the following cubic equation for Mc:

(γ − 1)M3
c − 5(γ − 1)M2

c + 10Mc − 2 = 0. (4.12)

Equation (4.12) can be solved explicitly for Mc. Introducing the number†
δ = γ − 1, (4.13)

and

B =

[(
−198 + 125δ + 3

√
6

δ

√
125δ2 − 524δ + 500

)
δ2

]1/3

, (4.14)

then

Mc =
B + 5δ

3δ
+

25δ − 30

3B
. (4.15)

The following series expansion in the powers of δ can be used to calculate Mc, which
exploits the smallness of δ:

Mc = 0.2 + 0.0192δ + 0.003696δ2 + 0.0008408064δ3 + · · · . (4.16)

The first two terms of the above series give a sufficiently accurate value of Mc. The
plot of Mc as a function of γ is shown in figure 4. It should be noted that Mc is a
property of gas (depending only on γ ).

The Mach number Mi can take any positive value i.e. the disturbance can start at
any point in the nozzle. However, there are some interesting differences in the two
cases, one in which the disturbance starts before Mc (Mi < Mc) and the other in which
the disturbance starts after Mc (Mi > Mc).

Case 1

Figure 3(b) depicts the case when Mi is less than Mc. It is clear that f (Mi)
intersects the curve f (M) at the two points Mi and M1. From Mi to M1, (4.9) holds
and consequently shock formation is favoured. At the point y1 (corresponding to
the Mach number M1), the integral

∫ y

0
(f (M) − f (Mi))/f (Mi) dy attains its maximum

† The authors are grateful to an anonymous referee for providing the exact explicit solution of
equation (4.12).
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Figure 5. Plot of M1 as a function of Mi for γ = 1.4.

value. Therefore, if shock forms at this location, the difference βi − y∗ would be
maximum. After M1, the value of the integral

∫ y

0
(f (M) − f (Mi))/f (Mi) dy starts

decreasing from its maximum value and eventually vanishes at a point M2. Thus,
although shock formation is favoured from M1 to M2 according to (4.9), the difference
βi − y∗ decreases. If shock forms at y2 (corresponding to the Mach number M2), y

∗
2 will

be equal to βi . After M2, the condition (4.10) holds and shock formation is opposed.
The Mach number M1 is one of the roots of the equation,

f (M) = f (Mi). (4.17)

The plot M1 versus Mi is shown in figure 5. It should be noted that the Mach number
M1 is independent of the base flow profile. If the Mach number profile of the base
flow is known, the Mach number M2 can be calculated from the relation,∫ y2

0

(f (M) − f (Mi))

f (Mi)
dy = 0. (4.18)

Case 2

Figure 3(c) depicts the case when Mi is greater than Mc. It is clear that f (Mi)
intersects the curve f (M) only at one point Mi . Since f (M) is always less than f (Mi),
the condition (4.10) holds, and consequently, shock formation is opposed.

Figure 6(a) depicts the evolution of the slope of the compressive disturbances in
an accelerating flow. The Mach number profile considered here is exponential, i.e.
M(x) = exp(αx). The value of α is 1.0 m−1. The disturbance starts at Mach number
0.1 and propagates along the direction of flow. The value of the stagnation speed of
sound aos is chosen to be 500 m s−1. The value of γ is 1.4. Such a situation can be
related to the disturbance propagating downstream in a rocket nozzle. The unsteady
combustion process or a temporary partial blockage of the nozzle by slag in the case
of a solid rocket motor may produce such disturbances. It can be seen from the figure
that as the value of |σi | is increased, the wave fronts become more and more unstable
and after a critical value of |σi |, all the wave fronts eventually steepen into shock (the
location of the shock is not shown in the figure).
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Figure 6. (a) The evolution of the slope of right-running compressive disturbances in an
accelerating base flow. (b) The evolution of the slope of right-running disturbances in a
decelerating base flow. The straight arrow on the figure shows the sense of temporal evolution.

4.1.2. Decelerating flow

In a decelerating flow in a C-D nozzle, the Mach number M =M(x) is a decreasing
function and thus has one-to-one correspondence with the distance x. Similar to the
accelerating flow, we could use Mach number M as an independent variable instead
of x. The same plot of f (M) versus M as in § 4.1.1 (figure 3a) can be used in the case
of decelerating flow. However, in this case, the wave front moves from a higher Mach
number to a lower Mach number, i.e. the wave front starting from Mach number Mi

will find Mach number less than Mi . The situations when the wave front starts at
Mach number Mi >Mc (see figure3b) and when the wave front starts at Mach number
Mi <Mc (see figure 3c) are exactly the same as case 1 and case 2, respectively, in
§ 4.1.1. For the decelerating flow, Mi should be read as M1 in figure 5, and vice versa.
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Figure 6(b) depicts the evolution of the slope of a compressive disturbance generated
in an exponentially decelerating base flow. The values of α and aos are −1.0 m−1 and
500 m s−1, respectively. The disturbance starts at Mach number 4 and propagates
along the flow. The value of γ is 1.4. This situation is similar to the propagation of
disturbances in the intake of air-breathing engines (turbojet/ramjet/scramjet) moving
at supersonic speed. The disturbances could be generated by a sudden variation in
the speed of the vehicle or change in the ambient conditions. It can be seen from
the figure that as the value of |σi | is increased, the wave fronts become more and
more unstable and after a critical value |σi | all the wave fronts eventually steepen
into shock. However, the values of |σi | for which wave fronts steepen into shock are
much less then that in the case of an accelerating flow (§ 4.1.1, figure 6a).

5. Nonlinear steepening of a left running wave
In this section, the nonlinear steepening of a left-running wave is investigated.

For a left-running wave, the integrating factor IF(y) (see (3.7)) is singular at M = 1.
Therefore, the analysis has to be performed separately in subsonic and supersonic
flow, which is in agreement with the fact that a left-running wave front never crosses
the unity Mach number.

In a subsonic flow, the velocity of the wave front (u0(y) − a0(y)) is negative and
therefore the wave front will always be moving towards the negative x-axis. In this
case, if it is assumed that a left-running wave front starts at y = 0 and the subsonic
base flow is extended up to −∞ or up to the sonic point (yth), the condition of shock
formation and the corresponding shock formation distance are:

|σ (0)| >
IF(0)∫ −∞/yth

0

IF(y)R(y) dy

, (5.1)

∫ y∗

0

IF(y)R(y) dy =
IF(0)

|σ (0)| . (5.2)

In the case of a supersonic base flow, the velocity of the wave front (u0 − a0) is
positive and the wave front will always be moving towards the positive x-axis. Similar
to the subsonic base flow, consider a left-running wave starting at y = 0 and the
supersonic base flow is extended up to ∞ or up to the sonic point (yth). Then the
condition of shock formation and corresponding shock formation distance are given
by (5.1) and (5.2), respectively, if −∞ is replaced by + ∞ in (5.1).

5.1. An example of flow in a converging–diverging (C-D) nozzle

The base flow in the C-D nozzle is the same as described in § 4.1. Considering a
left-running wave front starting at x = xi (y = 0) where the Mach number is Mi . The
expression for the shock formation distance and the condition of shock formation
are given by: ∫ y∗

0

g(M)

g(Mi)
dy =

2a0i(Mi − 1)

(γ + 1)|σi |
= βi, (5.3)

|σi | >
2a0i(Mi − 1)

(γ + 1)

∫ ∓∞/yth

0

g(M)

g(Mi)
dy

, (5.4)
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Figure 7. (a) Plot of g(M) as function of M . It has singularity at sonic condition. (b) The
case when the disturbance is created in subsonic flow. (c) The case when the disturbance is
created in supersonic flow.

where the function g(M) is:

g(M) =
2

(
1 + 1

2
(γ − 1)M2

) √
M

(γ − 1)(M − 1)3
. (5.5)

In (5.4), in the upper limit of the integral, the negative sign is for subsonic flow and
the positive sign is for supersonic flow. It should be noted that in decelerating flow, a
left-running wave will move towards the sonic throat (§ 5.1.2), and therefore, the upper
limit of integration in (5.4) will be yth instead of ± ∞. In the case of a left-running
wave, βi is:

βi = βs

Mi − 1√
1 + 1

2
(γ − 1)M2

i

. (5.6)

Similar to the right-running wave, the conditions favouring and opposing shock

formation can easily be derived. Denote the integral
∫ y∗

0
(g(M) − g(Mi))/g(Mi) dy by

G. Then, the conditions favouring shock formation will be:

G > 0 for supersonic flow and G < 0 for subsonic flow, (5.7)

and the conditions opposing shock will be:

G < 0 for supersonic flow and G > 0 for subsonic flow. (5.8)

5.1.1. Accelerating flow

The plot of g(M) as a function of M is shown in figure 7(a) for γ = 1.4. This
function is singular at M = 1. In subsonic flow, g(M) is negative and monotonically
decreases from 0 to −∞. In supersonic flow, g(M) is positive and monotonically
decreases from ∞ to 0. It is clear that a wave front in either region will move away
from the nozzle throat. We can easily show that in this case, the condition (5.8) is
always satisfied (see figures 7b and 7c). Thus, in an accelerating flow, shock formation
is always opposed for a left-running wave.

Figure 8 depicts the evolution of the slope of a left-running compressive disturbance
propagating in an accelerating flow for subsonic and supersonic flow. The variation of
Mach number is the same as that taken in § 4.1.1. The stagnation value of the speed
of sound is 500 m s−1. The value of γ is 1.4. In the subsonic flow, the disturbance
starts at Mach number 0.8 and propagates against the flow. In the supersonic flow,
disturbance starts at Mach number 1.2 and propagates along the flow. It can be seen
from the figures that as the value of |σi | is increased, the wave fronts become more
and more unstable and after a critical value |σi | all the wave fronts eventually steepen



Nonlinear distortion of travelling waves in variable-area ducts 361

–200(a)

(b)

–300

–400

–500

–600

–700

–800

(s–1)

(s–1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

–585

–590

–595

–600

–604

–608

–100

–300

–500

–700

–900

–1100

–1300

–1500

(s–1)

1.2 2.2 3.2

–830

–840

–850

–860

–870

–875

M

M

σ

(s–1)
σ

σi

σi

Figure 8. (a) The evolution of the slope of left-running compressive disturbances in the
subsonic region of an accelerating base flow. (b) The evolution of the slope of left-running
compressive disturbances in the supersonic region of an accelerating base flow. The straight
arrow on the figure shows the sense of temporal evolution.

into shock. A comparison with figure 6 reveals that the order of magnitude of |σi |
at which steepening takes place for left-running waves is much higher than that for
right-running waves.

5.1.2. Decelerating flow

In a decelerating flow, a left-running wave front in either region will move towards
the throat of the nozzle. It can easily be shown that the condition (5.7) is always
satisfied (see figure 7b, c). Thus, in decelerating flow, shock formation is favoured for
the left-running compressive wave. As the left-running wave front moves towards the
throat, the magnitude of its velocity (u0 − a0) keeps on decreasing and becomes zero
at the throat. As a consequence of this, if a wave front does not steepen into a shock,
it will take infinite time to reach the throat (a rigorous proof is possible using the
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properties of indefinite integrals). However, a compressive wave front will evolve into
a shock before reaching the throat (see Appendix A for the proof). Therefore, only
an expansion wave front can approach the throat without evolving into a shock.

In this particular case, it will be interesting to see the behaviour of an expansion
wave front as it approaches the throat. The slope of the expansive disturbance at the
throat is given by (see Appendix B for the derivation):

σth = lim
y→yth

x→0

σ =
−4

√
2a0s[dM(x)/dx]x=0

(γ + 1)3/2
. (5.9)

Using (4.3), we can show that:

M ′(0) = −
√

(γ + 1)/4
√

A′′(0)/A(0). (5.10)

Substituting this into (5.9) yields:

σth = 2
√

2aos

√
A′′(0)/A(0)/(γ + 1). (5.11)

This is the limiting value of the slope of the disturbance as it approaches the
nozzle throat. It is interesting to note that σth is independent of the initial slope of
the wave front. Therefore, at the throat, an expansion wave front having an initial
slope σi greater than σth will relax by an amount σi − σth and an expansion wave
front having initial slope less than σth will steepen by an amount σth − σi . Thus,
all the left-running expansion waves in a decelerating flow in a choked C-D nozzle
always tend towards a fixed strength disturbance. Such expansion waves are called
quenching waves. Clarke (1977) showed the existence of similar quenching waves in a
chemically reacting media. The strength (σth) of these expansion waves at the nozzle
throat depends upon the geometry of the nozzle at the throat.

Figure 9 depicts the evolution of expansive disturbances in subsonic and supersonic
base flows. The decelerating base flow is the same as in § 4.1.2. In the subsonic
region, the disturbance starts at Mach number 0.1 and propagates along the base
flow towards the nozzle throat. In the supersonic region, the disturbance starts at
Mach number 4 and propagates across the base flow towards the nozzle throat. It
can be seen that in both cases, the slopes of all the expansive disturbances created in
either regions approach the same finite value of 760.726 s−1. Such a high value shows
that the expansion wave front near the throat will be steep.

Table 1 summarizes the different cases discussed in § 4 and § 5.

6. Conclusions
The nonlinear steepening of disturbances in a steady non-uniform homentropic

flow is studied using the method of characteristics. It is found that only compressive
disturbances can cause shock formation in such flows. An expression for the minimum
value of the slope of the disturbance in order for a disturbance to steepen into a shock
is obtained. An implicit relation for the location of shock formation is also obtained.
Shock formation in a choked converging–diverging (C-D) nozzle is analysed for both
right-running and left-running waves.

The nonlinear analysis performed in the paper has the following distinct advantages
over a linear analysis. Linear stability analysis assumes that the initial disturbance is
small and predicts only the initial behaviour of disturbance, i.e. whether it will grow
or decay. On the other hand, the nonlinear analysis performed in the present paper
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Figure 9. (a) The evolution of the slope of left-running expansive disturbances in the subsonic
region of a decelerating base flow. (b) The evolution of the slope of left-running expansive
disturbances the supersonic region of a decelerating base flow. The straight arrow on the figure
shows the sense of temporal evolution.

Right-running wave
Accelerating flow Location of initial disturbance Tendency of shock formation

Mi < Mc Favoured if Ms < M2

Opposed if Ms > M2

Mi > Mc Opposed
Decelerating flow Mi < Mc Opposed

Mi > Mc Favoured if Ms < M2

Opposed if Ms > M2

Left-running wave
Accelerating flow Opposed
Decelerating flow Favoured

Table 1. The tendency of a compressive disturbance to steepen into shock in various flow
situations considered in the paper. The notation is the same as that used in the text. Here, Ms

is the Mach number of the base flow corresponding to the location where shock forms.
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gives the long time behaviour of a disturbance of arbitrary strength (initial slope), and
gives the location of shock if it forms, which is not possible using the linear stability
analysis. Furthermore, the linear stability analysis is independent of the initial strength
of the disturbance. However, the present paper demonstrates that the initial strength
of the disturbance is very important. In many cases, shock formation is possible only
if the initial strength of a compressive disturbance exceeds a minimum value.

The important findings of the present paper are:
1. In the case of right-running waves, there exists a critical Mach number whose

value is around 0.208. In an accelerating flow in a C-D nozzle, if the wave starts at
a Mach number greater than this critical Mach number, shock formation is always
opposed. However, if the wave starts at a Mach number less than this critical Mach
number, shock formation may or may not be opposed, depending upon where the
shock forms. In decelerating flow, if the wave starts at a Mach number less than the
critical Mach number, shock formation is opposed, and if it starts at a Mach number
greater than the critical Mach number, shock formation may or may not be opposed,
depending upon where the shock forms.

2. In the case of a right-running wave in an exponentially accelerating or
decelerating flow, shock forms only if the initial slope of the compression wave
front exceeds a minimum value.

3. In the caseof left-runningwaves, shock formation is alwaysopposed if thebaseflow
in the C-D nozzle is accelerating. On the other hand, if base flow is decelerating, shock
formation is favoured, and a compression wave will blow up before reaching the throat.

4. In the case of a left-running wave in an exponentially accelerating flow, shock
forms only if the initial slope of the compression wave front exceeds a minimum value.

5. Left-running expansion waves tend towards a permanent form in decelerating
flow in a C-D nozzle.

In the end, a comment about the stability of base flow, particularly in the transonic
region, towards a gasdynamic disturbance seems to be necessary. It is clear from
table 1 that in the case of accelerating base flow, if a compressive disturbance is
produced near the throat (in the transonic region), shock formation is opposed for
both right- and left-running waves. On the other hand (in the transonic region), in a
decelerating base flow, shock formation is favoured. Thus, in view of the explanation
given in § 1, accelerating flow is comparatively more inertially stable compared to
decelerating flow in transonic region, which is consistent with the findings in the
existing literature.
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this work. The authors further wish to thank Dr S.R. Chakravarthy and Mr P. Bala
Subrahmanyam, IIT Madras for their comments and suggestions during different
stages of this work. Thanks are also due to an anonymous referee for finding the
exact explicit solution of (4.12).

Appendix A
For a left-running wave front in a decelerating flow, the condition of shock

formation will be (5.4):

|σi | > 2a0i(Mi − 1)

/(
(γ + 1)

∫ yth

0

g(M)/g(Mi) dy

)
. (A 1)
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Here, yth = yth− in subsonic flow and yth = yth+ in supersonic flow. Consider the
following integral:∫ yth−

0

g(M) dy =

∫ xth−

xi

g(M) dx =

∫ 1−

Mi

g(M) dM

M ′(x)
. (A 2)

Let the maximum value of |M ′(x)| be Γ1 on [Mi, 1]. Then∣∣∣∣
∫ 1−

Mi

g(M) dM

M ′(x)

∣∣∣∣ �

∣∣∣∣Γ1

∫ 1−

Mi

g(M) dM

∣∣∣∣ . (A 3)

Now using (5.11),∫ 1−

Mi

g(M) dM = lim
M→1−

∫ M

Mi

g(M) dM = lim
M→1−

[F (M) − F (Mi)] = −∞. (A 4)

Thus, the integral
∫ yth−

0
g(M) dy is divergent. In a very similar fashion, we can

show that the integral
∫ yth+

0
g(M) dy is also divergent. Therefore, the condition (A 1)

will always be satisfied, and hence every left-running compression wave moving
towards the sonic throat will eventually evolve into a shock before reaching the
throat.

Appendix B
The slope of a left-running expansion wave front as it approaches the throat can

be calculated by taking the limit as y → yth or M → 1 in (3.3). Consider a left-
running expansion wave front moving in subsonic flow approaching the sonic throat.
Then,

lim
y→yth−

M→1−

1

σ
= lim

y→yth−

M→1−

[(
a0(0)

(
1 + ((γ − 1)/2)M2

i

)√
Mi

(Mi − 1)2

)

×
(

(M − 1)2

a0(y)(1 + ((γ − 1)/2)M2)
√

M

)]

+ lim
y→yth−

M→1−

[(
(γ + 1)(M − 1)2

2a0(y)(1 + ((γ − 1)/2)M2)
√

M

)

×
(∫ y

0

(1 + ((γ − 1)/2)M2)
√

M

(M − 1)3
dy

)]
. (B 1)

The first limit on right-hand side is zero. To evaluate the second limit, change the
variable of integration from y space to x space and then further to M space,

lim
y→yth−

M→1−

1

σ
= lim

y→yth−

M→1−

(∫ M

Mi

(1 + ((γ − 1)/2)M2)
√

M

(M − 1)3M ′ dM

)

1

/(
(γ + 1)(M − 1)2

2a0(xth)(1 + ((γ − 1)/2)M2)
√

M

) . (B 2)
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Since the integral in the numerator is divergent (see Appendix A), the above limit is
of the form ∞/∞. Applying L’Hopital’s rule to evaluate the limit, we obtain,

1

σth−
= lim

y→yth−

M→1−

1

σ
=

−(γ + 1)

4M ′(xth)a0(xth)
. (B 3)

In a similar fashion, we can show that

1

σth+

= lim
y→yth+

M→1+

1

σ
=

−(γ + 1)

4M ′(xth)a0(xth)
. (B 4)
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